FireworksEmbeddings
This will help you get started with Fireworks embedding models using LangChain. For detailed documentation on FireworksEmbeddings
features and configuration options, please refer to the API reference.
Overview
Integration details
Provider | Package |
---|---|
Fireworks | langchain-fireworks |
Setup
To access Fireworks embedding models you'll need to create a Fireworks account, get an API key, and install the langchain-fireworks
integration package.
Credentials
Head to fireworks.ai to sign up to Fireworks and generate an API key. Once you’ve done this set the FIREWORKS_API_KEY environment variable:
import getpass
import os
if not os.getenv("FIREWORKS_API_KEY"):
os.environ["FIREWORKS_API_KEY"] = getpass.getpass("Enter your Fireworks API key: ")
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
Installation
The LangChain Fireworks integration lives in the langchain-fireworks
package:
%pip install -qU langchain-fireworks
Instantiation
Now we can instantiate our model object and generate chat completions:
from langchain_fireworks import FireworksEmbeddings
embeddings = FireworksEmbeddings(
model="nomic-ai/nomic-embed-text-v1.5",
)
Indexing and Retrieval
Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our RAG tutorials under the working with external knowledge tutorials.
Below, see how to index and retrieve data using the embeddings
object we initialized above. In this example, we will index and retrieve a sample document in the InMemoryVectorStore
.
# Create a vector store with a sample text
from langchain_core.vectorstores import InMemoryVectorStore
text = "LangChain is the framework for building context-aware reasoning applications"
vectorstore = InMemoryVectorStore.from_texts(
[text],
embedding=embeddings,
)
# Use the vectorstore as a retriever
retriever = vectorstore.as_retriever()
# Retrieve the most similar text
retrieved_documents = retriever.invoke("What is LangChain?")
# show the retrieved document's content
retrieved_documents[0].page_content
'LangChain is the framework for building context-aware reasoning applications'
Direct Usage
Under the hood, the vectorstore and retriever implementations are calling embeddings.embed_documents(...)
and embeddings.embed_query(...)
to create embeddings for the text(s) used in from_texts
and retrieval invoke
operations, respectively.
You can directly call these methods to get embeddings for your own use cases.